A positively charged cluster in the epidermal growth factor-like domain of Factor VII-activating protease (FSAP) is essential for polyanion binding.
نویسندگان
چکیده
FSAP (Factor VII-activating protease) is a novel plasma-derived serine protease that regulates haemostasis as well as vascular cell proliferation. FSAP undergoes autoactivation in the presence of polyanionic macromolecules such as heparin and RNA. Competition experiments suggest that RNA and heparin bind to the same or overlapping interaction sites. A proteolysis approach, where FSAP was hydrolysed into smaller fragments, was used to identify the polyanion-binding site. The EGF (epidermal growth factor)-like domains EGF2 and EGF3 of FSAP are the major interaction domains for RNA. The amino acids Arg170, Arg171, Ser172 and Lys173 within the EGF3 domain were essential for this binding. This is also the region with the highest positive net charge in the protein and is most probably located in an exposed loop. It is also highly conserved across five species. Disruption of disulphide bridges led to the loss of RNA and heparin binding, indicating that the three-dimensional structure of the EGF3 domain is essential for binding to negatively charged heparin or RNA. The identification of polyanion-binding sites will help to define the role of FSAP in the vasculature.
منابع مشابه
Functional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII
Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...
متن کاملNucleic acids potentiate Factor VII-activating protease (FSAP)-mediated cleavage of platelet-derived growth factor-BB and inhibition of vascular smooth muscle cell proliferation.
FSAP (Factor VII-activating protease) can cleave and inactivate PDGF-BB (platelet-derived growth factor-BB) and thereby inhibits VSMC (vascular smooth-muscle cell) proliferation. The auto-activation of FSAP is facilitated by negatively charged polyanions such as heparin, dextransulfate or extracellular ribonucleic acids. Since auto-activation is essential for the anti-proliferative function of ...
متن کاملبررسی ساختار و عملکرد فرم فعال فاکتور X انعقاد خون
Introduction: Coagulation factor X is an important protein in the blood coagulation pathway. It contains significant structural features that affect its function. The purpose of this study was to investigate the structural-functional features of activated form of Factor X in the presence of calcium ions. Factor X consists of 4 domains. Gamma-carboxyl glutamic acid (GLA) domain contains negative...
متن کاملFactor VII-activating protease promotes the proteolysis and inhibition of tissue factor pathway inhibitor.
OBJECTIVE Factor VII-activating protease (FSAP) activates both factor VII and pro-urokinase and inhibits platelet-derived growth factor-BB, thus regulating hemostasis- and remodeling-associated processes in the vasculature. A genetic variant of FSAP (Marburg I polymorphism) results in low enzymatic activity and is associated with an enhanced risk of carotid stenosis and stroke. We postulate tha...
متن کاملFactor VII activating protease.
Factor VII activating protease (FSAP) is a circulating serine protease with high homology to fibrinolytic enzymes. A role in the regulation of coagulation and fibrinolysis is suspected based on in vitro studies demonstrating activation of FVII or pro-urokinase plasminogen activator (uPA). However, considering the paucity of any studies in animal models or any correlative studies in humans the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 394 Pt 3 شماره
صفحات -
تاریخ انتشار 2006